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ABSTRACT

Real-time personalized gaze estimation on AR/VR devices re-
quires both accuracy and efficiency, especially when adapt-
ing to individual users with limited personal data. This task
is challenging due to low-latency requirements, the presence
of dataset biases from dominant gaze directions, and risk of
catastrophic forgetting during adaptation. We present Dis-
tilled and Fine-Tuned (DFT) Gaze, a lightweight model for
personalized gaze estimation. Distilled from a larger teacher
model, DFT Gaze reduces model size while retaining essen-
tial visual features through knowledge distillation, without
relying on gaze-specific supervision. During fine-tuning, it
integrates gaze-specific supervision with Adapters, reaching
281K parameters for efficient adaptation and online updates
on edge devices. To mitigate dataset biases and reduce catas-
trophic forgetting, we introduce a clustering-based sampling
that balances gaze distribution for better generalization and
improves adaptation to individual gaze patterns, even with
only 5 personal images. DFT Gaze outperforms state-of-the-
art methods on the MPIIFaceGaze dataset for personalized
gaze estimation. Despite having the smallest model size at
281K parameters, it maintains low gaze errors across other
datasets, including MPIIGaze, OpenEDS2020, and AEA. At
10x smaller than its teacher model, DFT Gaze achieves fast
inference, a low parameter count, and effective adaptation,
making it well-suited for real-time applications in resource-
constrained environments.

Index Terms— Real-time personalized gaze estimation,
Self-supervised model distillation, Imbalanced gaze distribu-
tion, Catastrophic forgetting

1. INTRODUCTION

Gaze estimation determines the direction of a person’s gaze
from eye or face images, enabling applications in augmented
and virtual reality (AR/VR) [1, 2], mental health assessment
[3, 4], and human-computer interaction [5]. Real-time ap-
plications require gaze models that are both efficient and ac-
curate. Recent trends [6—8] in gaze estimation commonly
use large models trained on extensive datasets, which deliver
strong performance but come with high computational costs,
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Fig. 1. Gaze error versus model size. Our model achieves
lower gaze error than other approaches on MPIIFaceGaze, de-
spite having only 281K parameters.

making them impractical for real-time and edge device de-
ployment. Generalized gaze estimation aims to provide robust
predictions across diverse users but often overfits to dominant
gaze directions, struggling with rare variations. Personalized
gaze estimation [6, 7] fine-tunes models for individual users
to account for variations in eye shapes and movements, im-
proving accuracy but requiring substantial user data and risk-
ing overfitting when trained on limited samples.

To address these challenges, we introduce DFT Gaze,
an ultra-compact gaze estimation model that optimizes ef-
ficiency and accuracy through both structured knowledge
distillation (KD) and clustering-based fine-tuning. A ma-
jor limitation of gaze datasets for pretraining is their lack
of diversity, as they are often collected under controlled
conditions with limited lighting variations and background
complexity. Models trained solely on gaze data often struggle
with real-world variability due to limited diversity in light-
ing, background complexity, and environmental conditions.
Therefore, we use knowledge distillation (KD) with a masked
autoencoder to transfer knowledge from a large teacher model
to a compact student model. The student learns broad visual
representations without direct gaze supervision, improving
its robustness to different lighting conditions, backgrounds,
and environments in real-world gaze estimation.
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Fine-tuning on gaze datasets presents additional chal-
lenges. In generalized gaze estimation, gaze directions are
often imbalanced, with common directions dominating fine-
tuning. This creates gradient bias and reduces the model’s
ability to generalize to less frequent gaze angles. In per-
sonalized gaze estimation, fine-tuning on a small number of
user-specific samples increases the risk of overfitting, making
it harder for the model to adapt beyond the user’s typical gaze
patterns. To address these issues, we introduce a clustering-
based sampling that reorganizes the generalized dataset into
balanced clusters, reducing gradient bias and improving rep-
resentation diversity. For personalization, we mix a small
subset of generalized samples with user-specific data to pre-
vent catastrophic forgetting while maintaining adaptability.

While distillation and fine-tuning are well-known tech-
niques, our work uniquely integrates them into a single so-
lution to train a tiny model with only 281K parameters for
accurate personalized gaze estimation. During distillation,
we compress a large model trained on ImageNet-1K while
preserving its generalizability. During fine-tuning, we per-
sonalize the model using both clustered general training sam-
ples and personalized data to avoid catastrophic forgetting.
To the best of our knowledge, this is the first work to apply
these techniques for training tiny personalized gaze estima-
tion models.

2. RELATED WORK

Knowledge Distillation. Knowledge distillation compresses
models by transferring knowledge from a deep teacher net-
work to a lightweight student, enhancing inference speed
without compromising performance. It is categorized into
logit distillation [9, 10] and intermediate representation dis-
tillation [11-13], with our approach focusing on the latter to
minimize feature discrepancies while reducing model size.
FitNets [11] introduced this concept, CRD [12] applies con-
trastive learning for structured transfer, and DMAE [13]
refines it by aligning features across different architectures
using masked inputs. We construct a compact student by
directly downsizing the teacher network, transferring fun-
damental weights to preserve key insights, and employing
decoders to efficiently reconstruct features.

Personalized Gaze Estimation. Personalized gaze estima-
tion [6, 14—16] adapts predictions to individual variations us-
ing a minimal set of personal images for precise gaze map-
ping. Existing personalized gaze estimation methods, such as
SAGE [14], employ unsupervised adaptation, while TPGaze
[6] uses meta-learning for efficient fine-tuning. Our approach
leverages a distilled model, enabling efficient adaptation by
fine-tuning only a small set of Adapter parameters, making it
well-suited for online fine-tuning on edge devices. Addition-
ally, clustered gaze images help mitigate catastrophic forget-
ting and enhance adaptation, even with as few as five user-
specific images.
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3. OUR APPROACH

We aim to develop a compact gaze estimation model that is
both efficient and accurate for generalized and personalized
tasks. Existing models are often large and prone to overfitting,
especially when fine-tuning on limited personal data. To ad-
dress this, we use knowledge distillation and clustering-based
adaptation. First, we distill a student model from a larger
teacher model, preserving essential features while reducing
the model size by 10x. The student is trained on ImageNet-
1K to capture broad visual representations (See Section 3.1).
Given a dataset D = {(X) | X € Zp}, the student recon-
structs the original images X € RT*Wx3 and aligns its in-
termediate features f° with the teacher’s f7 € RHxWixCi
The reconstructed image is X € RT*Wx3 where H, W are
image dimensions and H;, W;, C; represent feature map di-
mensions at [-th stage. We then enhance the distilled model
with Adapters to form DFT Gaze for gaze prediction. To im-
prove generalization, we apply clustering to structure the gen-
eralized dataset as G = g G4, where each cluster is defined
as Gy = {(2f,v7) | 2{ € Zg,y! € Vg}i4}. Here, z{ and
y? are image-label pairs belonging to the clustered general-
ized set. For personalized gaze estimation, each user’s dataset
. Np,
Dp is defined as Dp = {(z¥,y?) | 2% € Ip,y? € Yp},_{.
where z¥,y? are image-label pairs for the j-th user. We use
Np, = 5 for fine-tuning and include ng (~100) additional
images from G to prevent catastrophic forgetting.

3.1. Pretraining a compact model for gaze estimation

Gaze estimation for real-time applications requires both ac-
curacy and efficiency, but many existing models [6-8, 17] are
too computationally expensive. Prior works have explored
ResNet-based [6, 7] and Transformer-based [17] architec-
tures, which achieve better accuracy but are impractical for
edge devices. ConvNeXt V2-A [18] offers strong visual
representations with a streamlined design, making it a more
promising candidate. However, it is still too large for efficient
deployment. Thus, we reduce its size to 281K parameters
while preserving essential feature through knowledge distil-
lation. Using a masked autoencoder (MAE) [18, 19] with
knowledge distillation (KD), we transfer essential features
from ConvNeXt V2-A into a small student to achieve high
compression without compromising performance.

Unlike conventional compression methods that rely on ag-
gressive pruning or low-rank approximations, our approach
simplifies compression by directly reducing channel dimen-
sions in later stages while keeping the first-stage channels un-
changed. Each stage consists of several ConvNeXt V2 Blocks
that process different resolution levels and feature abstrac-
tions, early stages capture fine details, while later stages ex-
tract high-level representations. To achieve high compression,
we include a MAE during KD, where the student reconstructs
missing information from the teacher’s feature maps and in-
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put images. This dual reconstruction helps the student model
extract essential features from limited information, improving
generalization despite its compact size. By predicting both
image structures and high-level representations, we maximize
knowledge retention while minimizing parameter count.

During knowledge distillation, the student model takes
masked input images from ImageNet-1K [20] and recon-
structs both the original images X" and teacher’s intermediate
features f7. The reconstructed image is denoted as X. The
teacher model processes the same images without masking
and provides complete feature representations. The student
learns to predict missing information in its feature maps and
align its outputs with the teacher’s intact features (Figure 2).

We choose ImageNet-1K instead of a gaze dataset for pre-
training because gaze datasets have several limitations. They
are often collected in controlled environments with uniform
lighting, simple backgrounds, and fixed poses, which makes it
difficult for models to handle real-world variations. They also
lack diverse noise, occlusions, and complex environmental
factors, which reduces robustness. In addition, gaze datasets
focus mainly on eye regions and facial structures, limiting
their ability to learn broader visual features like edges, tex-
tures, and object shapes. Masked autoencoders need diverse
training samples to reconstruct missing parts, but the low di-
versity in gaze datasets leads to poor or biased reconstruc-
tions. Pretraining on ImageNet-1K, which includes a wide
range of textures, lighting conditions, and objects, allows our
model to learn strong general features that support effective
fine-tuning for gaze estimation tasks.

We reconstruct high-level features in the last two stages
(I-th stage, where [ € 3,4) of ConvNeXt V2-A while keep-
ing the teacher’s weights in the first stage. This approach
helps the student model build on fundamental knowledge so
it can develop and process abstract concepts similarly to the
teacher. Each reconstruction task uses a separate ConvNeXt
V2 Block [18] as a decoder, one for input image reconstruc-
tion and another for feature reconstruction. The decoder ¥(z)
reconstructs the teacher’s intermediate features from input z:

U(z) = FC (z + Conviyg (GRN(GELU(z)))), 1)

where Z = Convy y1 (LN(DConvyx7(z))). GRN stands for
Global Response Normalization, GELU is an activation func-
tion, LN refers to Layer Normalization, and DConv represents
Depthwise Convolution. We align the student’s features, fls s
with the teacher’s features, flT , at the same stage using this
decoder. The reconstruction loss for both input image and
intermediate feature alignment is expressed as:

Unmasked Image Masked Image

-
Mask Input Image s
______________ >

1 3}1@ Frozen Weights :

13 :
Stage 25| i Tunable Weights;
1 :

| ¥(-) Decoder

Teacher Model Emulate Knowledge

Fig. 2. We downsize ConvNeXt V2-A into a student network
by inheriting first-stage weights and reducing channel dimen-
sions by 4x in stages 2-4. Each stage refines features from
fine details to high-level abstractions. The student processes
masked inputs, while the teacher uses unmasked ones. Sep-
arate decoders reconstruct input images and teacher features
for knowledge transfer. While this diagram focuses on feature
reconstruction, image reconstruction is also involved.

where K denotes the masked pixels, ¢(-) represents their total
count, and v = 0.5 balances the losses between image and
feature reconstruction.

3.2. Clustering for adaptive gaze estimation

Building on the distilled model with rich visual priors and a
wide range of visual structures, we integrate Adapters to form
the DFT Gaze model, which learns gaze patterns using gaze
datasets. Existing gaze estimation models struggle to balance
generalization across diverse users while maintaining adapt-
ability to individual gaze patterns. Generalized models tend to
overfit to dominant gaze directions, making them less respon-
sive to rare gaze variations. Conversely, fine-tuning on small
personalized datasets often results in overfitting, erasing pre-
viously learned knowledge and reducing the model’s ability to
generalize beyond a user’s typical gaze patterns. This trade-
off limits the effectiveness of gaze estimation models across
diverse users and adaptability for personalization.

To overcome these challenges, we introduce lightweight
Adapters coupled with a clustering-based training mecha-
nism. First, Adapters are integrated into the distilled model
and trained on a clustered generalized gaze dataset (G) to
improve diversity in gaze representation. Clustering prevents

Lorecon = _1 Z (X — ,’%k.)Q_;_ frequent gaze directions from dominating the learning pro-
(X ) reK cess by ensuring balanced sampling, reducing gradient bias,
1 T 5 2 @ and improving feature diversity. Once the model learns gen-
Y Z W Z (fl,k - \I’(fl,k)) ) eralized gaze estimation, the same Adapters are refined for
le{34} "VLE ke personalization.
2452

Authorized licensed use limited to: Harvard University SEAS. Downloaded on December 28,2025 at 01:06:42 UTC from IEEE Xplore. Restrictions apply.



However, catastrophic forgetting can occur when fine-
tuning on small datasets (e.g., 5 personal images) [6, 15, 21,
22]. If the model overfits and overwrites previously learned
general knowledge, it may generalize poorly. To mitigate this,
instead of fine-tuning solely on limited user-specific data, we
also incorporate a small subset of the clustered generalized
gaze dataset. This preserves a broad feature space, stabilizes
adaptation, and ensures the model retains general knowledge
while adapting to individual gaze behaviors.

In generalized gaze estimation, the DFT Gaze model
learns diverse gaze variations using Adapters, which con-
sist of two fully connected (FC) layers, BatchNorm (BN),
and LeakyReLLU (LReLU) activation. Only the Adapters are
fine-tuned, while the rest of the model remains unchanged
to preserve learned visual knowledge. However, a major
challenge in generalized gaze estimation is the dominance
of common gaze directions. Frequent gaze patterns, such
as looking straight ahead, appear more often in the dataset,
leading the model to focus disproportionately on them while
struggling to recognize less frequent gaze variations, such
as extreme side gazes. To address this, we apply K-means
clustering to divide the generalized dataset (Dg) into 15
balanced groups, forming the clustered generalized set (G).
Even sampling from each group ensures better representa-
tion of rare gaze directions and reduces gradient bias during
training. Adapters within each ConvNeXt V2 Block adjust
internal features to better align with varied gaze patterns,
enhancing the model’s robustness. The transformation within
an Adapter is defined as:

Adapter(f") = FCyp (LReLU(BN(FCdOW,(fV)))) 3)

Here, £V denotes the features from the final convolutional
layer of each block. The FC ., layer compresses these fea-
tures to a quarter of their original dimension, focusing on the
most relevant attributes. The FC,,;, layer then restores the fea-
tures back to their original dimensions.

In personalized gaze estimation, the model is fine-tuned
to adapt to individual users. This involves refining Adapters
in the last two stages of the DFT Gaze model using a person-
alized dataset (Dp) with the first five gaze images per par-
ticipant. A key challenge is limited diversity in user data.
Since gaze patterns are often repetitive, fine-tuning on a small
dataset risks overfitting, making the model too specialized
and less effective for unseen gaze directions. For example,
if a user frequently looks slightly left or right, the model may
struggle with rare gaze shifts like extreme upward glances.
To prevent this, we introduce a small subset of the clustered
generalized dataset (G) during personalization. This helps the
model adapt to user-specific patterns while retaining broader
gaze variations. Additionally, incorporating samples from G
mitigates catastrophic forgetting, preserving knowledge from
generalized training.

To optimize the DFT Gaze model, we use an L1 loss func-
tion for both generalized and personalized gaze estimation.

Table 1. Comparison of state-of-the-art methods for gener-
alized and personalized gaze estimation. Bold indicates the
best performance; italics denote the second-best.

Model #Param (Tunable) ‘ MPIIGaze MPIIFaceGaze AEA  OpenEDS2020
Generalized Gaze Estimation

GazeNet [8] 90.24M (90.24M) 5.70 5.76 3.01 7.51
ConvNeXt V2-A (Teacher model) [18] 3.6M (191.7K) 5.30 4.29 1.94 6.90
DFT Gaze 281K (14.43K) 6.13 5.17 2.14 7.82
Personalized Gaze Estimation

GazeNet 8] 90.24M (90.24M) 539 - 4.16 6.57
PNP-GA [7] 119.5M (116.9M) - 6.91

RUDA [23] 12.20M (12.20M) - 6.86

TPGaze [6] 11.82M (125K) - 6.30 - -
ConvNeXt V2-A (Teacher model) [18] 3.6M (191.7K) 5.49 4.60 232 5.36
DFT Gaze 281K (14.43K) 6.61 5.35 2.60 5.80

The generalized dataset is divided into clusters, each contain-
ing N, samples. Given an input 2/ € RT*W>3 from @,
the model predicts ! € R?, compared against the ground
truth y? € R2. For personalization, the dataset includes user-
specific images z% € RA*XWX3 and a small subset of gener-
alized samples z from G to prevent catastrophic forgetting.
The model predicts §7 € R?, with labels 4! € R?. Both tasks

are optimized separately.

1 &
ﬁcszG;\yff@fl @)
where N is the total number of generalized samples.
1 Np;+nc
Lp;, = Np, T ; lyi — 9 )

where Np, is the number of user-specific samples for the j-th
user, and n¢ is the number of additional generalized samples.

4. EXPERIMENTS

We evaluate DFT Gaze on four benchmarks and test person-
alization on unseen users not included in the generalized test
set. Since the personalized data has a different distribution,
gaze error may be higher, which aligns with real-world adap-
tation challenges.

4.1. Experimental setup and implementation details

Both DFT Gaze and ConvNeXt V2-A are trained using
AdamW. For generalized gaze estimation, we use a batch
size of 64. Models are trained for 100 epochs on MPI-
IGaze and MPIIFaceGaze, and for 200 epochs on AEA and
OpenEDS2020. Learning rate is set to 6.25 x 10> for all
datasets. For personalized gaze estimation, we use a batch
size of 8 and train for 100 epochs on each of the datasets.
Learning rate is set to 1 x 1073 for MPIIGaze and MPI-
IFaceGaze, and 1 x 10~ for AEA and OpenEDS2020.

4.2. Comparison with state-of-the-art methods

Table 1 presents the performance comparison of DFT Gaze
against state-of-the-art methods and the teacher model for
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Table 2. Impact of imbalanced data on generalized gaze esti-

mation and catastrophic forgetting in personalized estimation.
| OpenEDS2020

Sampling Method

Generalized Gaze Estimation
w/ clustered generalized set (G) 7.82

w/o clustered set (imbalanced gaze data) 10.23

Personalized Gaze Estimation

w/ small subset of clustered generalized set (G) 5.80

w/o clustered set (catastrophic forgetting) 6.92

Table 3. Impact of teacher knowledge, feature reconstruction.

Distillation Method ‘ OpenEDS2020
Generalized Gaze Estimation

Full generalized DFT Gaze 7.82

w/o inheriting teacher’s knowledge 9.50

w/o reconstructing teacher’s features 10.52

both generalized and personalized gaze estimation. DFT
Gaze achieves the smallest parameter count (281K) and the
lowest number of tunable parameters (14.43K) while main-
taining minimal gaze error increase compared to the teacher
model (ConvNeXt V2-A) in generalized gaze estimation. We
note that PnP-GA, RUDA, and TPGaze address a more diffi-
cult unsupervised adaptation setting from ETH-XGaze [24],
while GazeNet, ConvNeXt V2-A, and DFT Gaze are trained
in-domain with supervision.

4.3. Ablation study

Cluster-based gaze adaptation. Table 2 shows generalized
set clustering reduces overfitting to frequent gaze angles,
improving generalization. For personalized gaze estimation,
fine-tuning with a small clustered subset prevents catastrophic
forgetting and preserves diversity, while direct fine-tuning re-
sults in greater error from overfitting.

Teacher knowledge and feature reconstruction. Table 3
shows the impact of teacher knowledge and feature recon-
struction. DFT Gaze achieves the lowest error of 7.82°. Omit-
ting knowledge inheritance increases error to 9.50°. Remov-
ing feature reconstruction further increases error to 10.52°.
Reconstructing stages. Table 4 shows that reconstructing
stages 3 and 4 achieves the lowest error (7.82°). Limiting re-
construction to stage 4 increases the error to 8.92°, showing
the importance of earlier stages.

Adapter designs. Table 5 shows that Adapter design impacts
performance. DFT Gaze, with two fully connected layers
(281K parameters, 14.43K tunable), achieves the lowest er-
ror, while a single-layer projection increases error.

Adapter channel reduction. Table 6 shows the trade-off be-
tween model size and performance with channel reduction in
Adapters. DFT Gaze uses a 4x reduction, maintaining effi-
ciency while preserving essential features. Further reducing
to 8 X compromises performance.

Table 4. Impact of reconstruction stages.
Reconstructed Stages ‘ OpenEDS2020

Generalized Gaze Estimation

7.82
8.92

Stages 3 and 4

Stage 4 only

Table 5. Impact of Adapter design.

#Params (Tunable) | OpenEDS2020

Adapter Design

Generalized Gaze Estimation
Full generalized DFT Gaze
Single FC layer

281K (14.43K)
293.82K (27.24K)

7.82
10.86

Table 6. Impact of Adapter channel reduction.
Adapter Channel Reduction ~ #Params (Tunable) ‘ OpenEDS2020

Generalized Gaze Estimation

No reduction 321.8K (55.2K) 8.43
2x reduction 294.6K (28.0K) 8.75
4x reduction 281K (14.43K) 7.82
8x reduction 274.2K (7.6K) 10.92

4.4. Gaze estimation latency on edge device

To evaluate real-time gaze estimation, we measured the la-
tency of ConvNeXt V2-A (teacher), DFT Gaze (student),
GazeNet, and TPGaze on a Raspberry Pi 4 (§GB RAM) over
1,000 iterations using the AEA dataset. As shown in Figure
3, GazeNet had the highest latency (1960.80 ms), followed
by ConvNeXt V2-A (744.68 ms) and TPGaze (560.25 ms).
DFT Gaze achieved the lowest latency (360.21 ms), making
it the best choice for real-time edge applications.

Latency Comparison of Models on Raspberry Pi 4

GazeNet 1960.80 ms

ConvNeXt V2-A 744.68 ms

TrGaze [N s60.25 ms
DFT Gaze 360.21 ms

0 500 1000 1500 2000
Latency (ms)

Fig. 3. Latency comparison of gaze models on the AEA
dataset: DFT Gaze is the fastest (=360 ms), followed
by TPGaze (=560 ms), ConvNeXt V2-A (/745 ms), and
GazeNet (=1961 ms).

5. CONCLUSION

We introduce DFT Gaze, an ultra-compact and efficient
model for personalized gaze estimation. Through structured
knowledge distillation with masked autoencoders, our ap-
proach learns rich visual representations from a large teacher
model. Moreover, clustering-based training preserves di-
verse gaze patterns and prevents catastrophic forgetting. We
improve adaptability across different users. Despite having
just 281K parameters, DFT Gaze outperforms state-of-the-art
methods in accuracy and efficiency, making it well-suited for
real-time personalized gaze estimation on edge devices.
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